Tricuspid Atresia

Heart With Tricuspid Atresia

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.

Atresia is defined as the congenital absence of a normal opening. In the case of tricuspid atresia, the tricuspid valve is not present resulting in a lack of communication between the right atrium and the right ventricle. Consequently, the right ventricle is small and underdeveloped. An associated ASD allows blood to be diverted from the right to the left atrium. Survival depends on the presence of a VSD or on the ductus arteriosus remaining open after birth in order for blood to reach the lungs.

Corrective surgery is done in a series of three stages. The first stage, performed in the first days of life, is known as a Shunt Operation. During this procedure, a small tube (shunt) is placed between the aorta and the branch pulmonary artery. This helps increase blood flow to the lungs. The second and third stages are collectively known as the Fontan Procedure. The second procedure, performed at approximately six months of age, creates a Bi-directional Cavo Pulmonary Connection (BCPC).

This involves connecting the superior vena cava to the right pulmonary branch artery. The BCPC allows the deoxygenated blood of the upper half of the body to flow directly to the lungs. The shunt placed during the first stage operation is also ligated at this time. The third and final stage is performed at approximately 12 months of age. During this procedure, the deoxygenated blood of the lower half of the heart is directed to the lungs. This is done by channeling the blood of the inferior vena cava through the right atrium to the right branch pulmonary artery.

What Is Normal Cardiac Anatomy?

When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

Learn More About Normal Cardiac Anatomy

Heart With Normal Cardiac Anatomy

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.

When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

The heart is composed of four chambers. The two upper chambers, known as atria, collect blood as it flows back to the heart. The two lower chambers, known as ventricles, pump blood with each heartbeat to the two main arteries (the pulmonary artery and the aorta). The septum is the wall that divides the heart into right and left sides. The atrial septum separates the right and left atria; likewise, the ventricular septum separates the two ventricles.

There are four valves that control the flow of blood through the heart. These flap-like structures allow blood to flow in only one direction. The tricuspid and mitral valves, also known as the atrioventricular valves, separate the upper and lower chambers of the heart. The aortic and pulmonary valves, also known as the arterial valves, separate the ventricles from the main arteries. Oxygen-depleted blood returns from the body and drains into the right atrium via the superior and inferior vena cavas. The blood in the right atrium then passes through the tricuspid valve and enters the right ventricle.

Next, the blood passes through the pulmonary valve, enters the pulmonary artery, and travels to the lungs where it is replenished with oxygen. The oxygen-rich blood returns to the heart via the pulmonary veins, draining into the left atrium. The blood in the left atrium passes through the bicuspid, or mitral, valve and enters the left ventricle.

Finally, the oxygen-rich blood flows through the aortic valve into the aorta and out to the rest of the body.

ECG (Electrocardiogram)

An electrocardiogram (ECG) measures the heart's electrical activity to help evaluate its function and identify any problems that might exist. The ECG can help determine the rate and regularity of heartbeats, the size and position of the heart's chambers, and whether there is any damage present.

How Is an ECG Done?

There is nothing painful about getting an ECG. The patient is asked to lie down, and a series of small metal tabs (called electrodes) are fixed to the skin with sticky papers. These electrodes are placed in a standard pattern on the shoulders, the chest, the wrists, and the ankles. After the electrodes are in place, the person is asked to hold still and, perhaps, to hold his or her breath briefly while the heartbeats are recorded for a short period. The patient also might be asked to get up and exercise for a while.

The information is interpreted by a machine and drawn as a graph. The graph consists of multiple waves, which reflect the activity of the heart. The height, length, and frequency of the waves are read in the following way:

  • The number of waves per minute on the graph is the heart rate.
  • The distances between these waves is the heart rhythm.
  • The shapes of the waves show how well the heart's electrical impulses are working, the size of the heart, and how well the individual components of the heart are working together.
  • The consistency of the waves provides relatively specific information about any heart damage present.

A person's heartbeat should be consistent and even. ECGs look for abnormally slow and fast heart rates, abnormal rhythm patterns, conduction blocks (short-circuits of the heart's electrical impulses that cause rhythm inconsistencies between the upper and lower chambers) — and four types of heart damage:

  1. ventricular hypertrophy — an abnormal thickening of the heart muscle
  2. ischemia — caused by an abnormally decreased blood supply
  3. cardiomyopathies — abnormalities in the heart muscle itself
  4. electrolyte and drug disturbances — these can alter the heart's electrochemical environment

Computerized ECGs can be combined with other tests to provide a multimedia account of the heart. These additional tests include echocardiograms (which are basically "ultrasound" tests that bounce sound off the heart and use the echoes to produce an image) and thallium scans (which are kind of like X-rays and use a radioactive tracer, injected into the bloodstream, to help draw a picture of the heart).

In the past, the ECG was recorded on a machine that drew on long strips of paper, with records from each electrode presented in a standard sequence. Now the ECG tracings are stored as computer files that can be called up and printed.

How Long Will it Take to Get Results?

Results of the ECG are available immediately. In fact, the ECG machine's computer even provides an instant interpretation of the findings as it makes the report. However, the doctor also might ask an expert, usually a cardiologist, to help analyze and interpret the ECG.

Reference ranges for heart rate and the relative lengths and sizes of the various components of the heartbeat figures vary, and diagnostic differences may be subtle, requiring an expert eye to detect them.

Reviewed by: Steven Dowshen, MD
Date reviewed: September 26, 2016