Atrial Septal Defects

Heart With Atrial Septal Defects

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.


An Atrial Septal Defect, or ASD, is a hole in the wall between the right and left atria (atrial septum). In the presence of an ASD, blood flows from the higher pressure left atrium to the lower pressure right atrium.

When this happens, the oxygen-rich blood of the left atrium is redirected through the right side of the heart and back to the lungs. The right atrium, right ventricle, and pulmonary artery may enlarge due to the increased blood flow through these structures.

Long-term side effects of an untreated ASD include atrial arrythmias (loss or abnormality of rhythm), ventricular dysfunction, and pulmonary vascular obstructive disease (a condition in which the pulmonary arteries become thickened due to high blood flow). For these reasons, it is preferential to close even small ASDs early in life to prevent complications later in life.

Three Types of ASD

 
Secundum-Type ASD

Secundum-type ASDs are the most common, comprising approximately 85% of all ASDs. In many cases, infants and young children are asymptomatic and the ASD may not be detected until school age or later. Approximately 20% of secundum-type ASDs close spontaneously in the first year of life. Often, a heart murmur, associated with the increase in blood flow across the pulmonary valve, is the symptom that causes a physician to investigate further. The diagnosis of an ASD is confirmed by echocardiography.

In a secundum-type ASD, the hole is located in the central part of the atrial septum. The methods of treatment for a secundum-type ASD consist of surgical repair or a catheter technique. Options for surgical repair involve suture closure (reserved for small ASDs) or patch closure. The patch material may be a portion of the patients own pericardium (the sac around the heart) or a synthetic material. The catheter technique involves closure of the ASD with a synthetic device that plugs the hole. The device is introduced through a heart catheter which is passed through a vein in the leg that leads up to the heart. Initially, the device is held in place by the natural pressures created within the atria. Over time, the device acts as a framework over which normal tissue grows.

 
Sinus Venosus ASD

Sinus venosus atrial septal defects constitute 5% to 10% of all ASDs. In a sinus venosus ASD the hole is located in the upper portion of the atrial septum. This type of ASD is often associated with anomalous drainage of the right, upper pulmonary veins. In other words, the pulmonary veins, which normally carry oxygenated blood from the lungs to the left atrium, drain into the right atrium instead. There is no chance for spontaneous closure of this type of ASD. For this reason, surgical repair is necessary for patients with this type of ASD.

 
Primum-Type ASD

Primum-type ASDs constitute between 5% and 10% of all ASDs. In a primum-type ASD the hole is located in the lower part of the atrial septum. Frequently, abnormalities of one or more heart valves (most often the mitral valve) are associated with this defect. Unlike the secundum-type ASD, symptoms of this type of ASD are seen during early childhood. Surgical repair is the only method of treatment for a primum type ASD since there is no chance of spontaneous closure.


What Is Normal Cardiac Anatomy?

When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

 
Learn More About Normal Cardiac Anatomy

Heart With Normal Cardiac Anatomy

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.


When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

The heart is composed of four chambers. The two upper chambers, known as atria, collect blood as it flows back to the heart. The two lower chambers, known as ventricles, pump blood with each heartbeat to the two main arteries (the pulmonary artery and the aorta). The septum is the wall that divides the heart into right and left sides. The atrial septum separates the right and left atria; likewise, the ventricular septum separates the two ventricles.

There are four valves that control the flow of blood through the heart. These flap-like structures allow blood to flow in only one direction. The tricuspid and mitral valves, also known as the atrioventricular valves, separate the upper and lower chambers of the heart. The aortic and pulmonary valves, also known as the arterial valves, separate the ventricles from the main arteries. Oxygen-depleted blood returns from the body and drains into the right atrium via the superior and inferior vena cavas. The blood in the right atrium then passes through the tricuspid valve and enters the right ventricle.

Next, the blood passes through the pulmonary valve, enters the pulmonary artery, and travels to the lungs where it is replenished with oxygen. The oxygen-rich blood returns to the heart via the pulmonary veins, draining into the left atrium. The blood in the left atrium passes through the bicuspid, or mitral, valve and enters the left ventricle.

Finally, the oxygen-rich blood flows through the aortic valve into the aorta and out to the rest of the body.

ECG (Electrocardiogram)

An electrocardiogram (ECG) measures the heart's electrical activity to help evaluate its function and identify any problems that might exist. The ECG can help determine the rate and regularity of heartbeats, the size and position of the heart's chambers, and whether there is any damage present.

How Is an ECG Done?

There is nothing painful about getting an ECG. The patient is asked to lie down, and a series of small metal tabs (called electrodes) are fixed to the skin with sticky papers. These electrodes are placed in a standard pattern on the shoulders, the chest, the wrists, and the ankles. After the electrodes are in place, the person is asked to hold still and, perhaps, to hold his or her breath briefly while the heartbeats are recorded for a short period. The patient also might be asked to get up and exercise for a while.

The information is interpreted by a machine and drawn as a graph. The graph consists of multiple waves, which reflect the activity of the heart. The height, length, and frequency of the waves are read in the following way:

  • The number of waves per minute on the graph is the heart rate.
  • The distances between these waves is the heart rhythm.
  • The shapes of the waves show how well the heart's electrical impulses are working, the size of the heart, and how well the individual components of the heart are working together.
  • The consistency of the waves provides relatively specific information about any heart damage present.

A person's heartbeat should be consistent and even. ECGs look for abnormally slow and fast heart rates, abnormal rhythm patterns, conduction blocks (short-circuits of the heart's electrical impulses that cause rhythm inconsistencies between the upper and lower chambers) — and four types of heart damage:

  1. ventricular hypertrophy — an abnormal thickening of the heart muscle
  2. ischemia — caused by an abnormally decreased blood supply
  3. cardiomyopathies — abnormalities in the heart muscle itself
  4. electrolyte and drug disturbances — these can alter the heart's electrochemical environment

Computerized ECGs can be combined with other tests to provide a multimedia account of the heart. These additional tests include echocardiograms (which are basically "ultrasound" tests that bounce sound off the heart and use the echoes to produce an image) and thallium scans (which are kind of like X-rays and use a radioactive tracer, injected into the bloodstream, to help draw a picture of the heart).

In the past, the ECG was recorded on a machine that drew on long strips of paper, with records from each electrode presented in a standard sequence. Now the ECG tracings are stored as computer files that can be called up and printed.

How Long Will it Take to Get Results?

Results of the ECG are available immediately. In fact, the ECG machine's computer even provides an instant interpretation of the findings as it makes the report. However, the doctor also might ask an expert, usually a cardiologist, to help analyze and interpret the ECG.

Reference ranges for heart rate and the relative lengths and sizes of the various components of the heartbeat figures vary, and diagnostic differences may be subtle, requiring an expert eye to detect them.

Reviewed by: Steven Dowshen, MD
Date reviewed: August 11, 2016