Coarctation of the Aorta

Heart With Coarctation of the Aorta

Animation of a heart with coarctation of the aorta

Note: To view the animation of a heart with coarctation of the aorta, you need the latest version of the Adobe Flash Player.

The aorta is the main artery that sends oxygen-rich blood from the heart to the body. Coarctation refers to a narrowing of the aorta, usually found in the descending aorta, which hinders blood flow to the lower half of the body. This forces the left ventricle to work harder to pump blood past the constriction. This leads to an increase in pressure in the left ventricle causing hypertrophy (enlargement) of the ventricle.

Surgical repair is required to correct coarctation of the aorta and may be done using one of two approaches. The first method, known as an "end-to-end anastomosis", involves cutting out the narrowed portion of the aorta and connecting the two ends together. In the second approach, a patch is used to widen the narrowed portion of the aorta. The patch material may be a blood vessel from the arm (subclavian artery) or synthetic material.

What Is Normal Cardiac Anatomy?

When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

Learn More About Normal Cardiac Anatomy

Heart With Normal Cardiac Anatomy

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.

When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

The heart is composed of four chambers. The two upper chambers, known as atria, collect blood as it flows back to the heart. The two lower chambers, known as ventricles, pump blood with each heartbeat to the two main arteries (the pulmonary artery and the aorta). The septum is the wall that divides the heart into right and left sides. The atrial septum separates the right and left atria; likewise, the ventricular septum separates the two ventricles.

There are four valves that control the flow of blood through the heart. These flap-like structures allow blood to flow in only one direction. The tricuspid and mitral valves, also known as the atrioventricular valves, separate the upper and lower chambers of the heart. The aortic and pulmonary valves, also known as the arterial valves, separate the ventricles from the main arteries. Oxygen-depleted blood returns from the body and drains into the right atrium via the superior and inferior vena cavas. The blood in the right atrium then passes through the tricuspid valve and enters the right ventricle.

Next, the blood passes through the pulmonary valve, enters the pulmonary artery, and travels to the lungs where it is replenished with oxygen. The oxygen-rich blood returns to the heart via the pulmonary veins, draining into the left atrium. The blood in the left atrium passes through the bicuspid, or mitral, valve and enters the left ventricle.

Finally, the oxygen-rich blood flows through the aortic valve into the aorta and out to the rest of the body.

Patent Ductus Arteriosus (PDA)

The ductus arteriosus is a normal blood vessel that connects two major arteries — the aorta and the pulmonary artery — that carry blood away from the heart in a developing fetus.

The lungs are not used while a fetus is in the womb because the baby gets oxygen directly from the mother's placenta. The ductus arteriosus diverts blood away from the lungs and sends it directly to the body. When a newborn breathes and begins to use the lungs, the ductus is no longer needed and usually closes during the first 2 days after birth.

But when the ductus fails to close, a condition called patent (meaning "open") ductus arteriosus (PDA) results, in which oxygen-rich blood from the aorta is allowed to mix with oxygen-poor blood in the pulmonary artery. As a result, too much blood flows into the lungs, which puts a strain on the heart and increases blood pressure in the pulmonary arteries.


The cause of PDA is not known, but genetics might play a role. PDA is more common in premature babies and affects twice as many girls as boys. It's also common among babies with neonatal respiratory distress syndrome, babies with genetic disorders (such as Down syndrome), and babies whose mothers had rubella (also called German measles) during pregnancy.

In the vast majority of babies with a PDA but an otherwise normal heart, the PDA will shrink and go away on its own in the first few days of life. Some PDAs that don't close then will close on their own by the time the child is a year old.

In premature infants, the PDA is more likely to stay open, particularly if the baby has lung disease. When this happens, doctors might consider treatment to close the PDA.

In infants born with other heart problems that decrease blood flow from the heart to the lungs or decrease the flow of oxygen-rich blood to the body, the PDA may actually help, and the doctor might prescribe medicine to keep the ductus arteriosus open.

Symptoms and Tests

Babies with a large PDA might have symptoms such as:

  • a bounding (strong and forceful) pulse
  • fast breathing
  • poor feeding habits
  • shortness of breath
  • sweating while feeding
  • tiring very easily
  • poor growth

If a PDA is suspected, the doctor will use a stethoscope to listen for a heart murmur, which is often heard in babies with PDAs. Follow-up tests might include:

  • a chest X-ray
  • an EKG, a test that measures the heart's electrical activity and can show if the heart is enlarged
  • an echocardiogram, a test that uses sound waves to diagnose heart problems. These waves bounce off parts of the heart, creating a picture of the heart that is shown on a monitor. In babies with PDA, an echo shows how big the opening is and how well the heart is handling it.
  • blood tests


The three treatment options for PDA are medication, catheter-based procedures, and surgery. A doctor will close a PDA if the size of the opening is large enough that the lungs could become overloaded with blood, a condition that can lead to an enlarged heart.

A doctor might also close a PDA to reduce the risk of developing a heart infection known as endocarditis, which affects the tissue lining the heart and blood vessels. Endocarditis is serious and requires treatment with intravenous (IV) antibiotics.

Reviewed by: Gina Baffa, MD;Rupal Christine Gupta, MD
Date reviewed: September 26, 2016