Total Anomalous Pulmonary Venous Return

Heart of Total Anomalous Pulmonary Venous Return

Infracardiac

Supracardiac

Note: To view total anomalous pulmonary venous return animations you need the latest version of Adobe Flash Player.

Normally, oxygenated blood flows from the lungs to the left atrium through the pulmonary veins. In a case of Total Anomalous Pulmonary Venous Return (TAPVR), the pulmonary veins drain into the right atrium rather than the left atrium. When this happens, the oxygenated blood returning from the lungs mixes with the deoxygenated blood in the right atrium.

Some form of communication between the right and left sides of the heart, usually an atrial septal defect (ASD), must be present in order for oxygenated blood to reach the body. Surgical repair of total anomalous pulmonary venous return is required within the first few months of life. The goal of corrective surgery is to surgically create a connection between the pulmonary veins and the left atrium.


How Total Anomalous Pulmonary Venous Return Differs From Normal Cardiac Anatomy?

If your child has total anomalous pulmonary venous return the structure of his or her heart is different from normal cardiac anatomy.

 
Learn More About Normal Cardiac Anatomy

Heart With Normal Cardiac Anatomy

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.


When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

The heart is composed of four chambers. The two upper chambers, known as atria, collect blood as it flows back to the heart. The two lower chambers, known as ventricles, pump blood with each heartbeat to the two main arteries (the pulmonary artery and the aorta). The septum is the wall that divides the heart into right and left sides. The atrial septum separates the right and left atria; likewise, the ventricular septum separates the two ventricles.

There are four valves that control the flow of blood through the heart. These flap-like structures allow blood to flow in only one direction. The tricuspid and mitral valves, also known as the atrioventricular valves, separate the upper and lower chambers of the heart. The aortic and pulmonary valves, also known as the arterial valves, separate the ventricles from the main arteries. Oxygen-depleted blood returns from the body and drains into the right atrium via the superior and inferior vena cavas. The blood in the right atrium then passes through the tricuspid valve and enters the right ventricle.

Next, the blood passes through the pulmonary valve, enters the pulmonary artery, and travels to the lungs where it is replenished with oxygen. The oxygen-rich blood returns to the heart via the pulmonary veins, draining into the left atrium. The blood in the left atrium passes through the bicuspid, or mitral, valve and enters the left ventricle.

Finally, the oxygen-rich blood flows through the aortic valve into the aorta and out to the rest of the body.