Systemic Inflammatory Response Syndrome (SIRS) and ARDS in the PICU

Background and Definitions

Pathophysiology

Novel Approaches

Andrew T. Costarino, M.D. and Scott Penfil, M.D.
Pediatric Intensive Care Unit
Alfred I. duPont Hospital for Children

Wilmington, DE
Case Presentation

- 4 y/o female
 - Former premature infant born at EGA 30 weeks
 - Developed NEC at age 2 mos requiring surgical bowel resection
 - Resultant short bowel syndrome/TPN dependent
 - Subsequently developed cholestatic liver disease requiring liver transplantation 7/02
Case Presentation (continued)

- Developed biliary stricture as complication of transplant
- Underwent ERCP with biliary sphincterotomy and placement of biliary endoprosthesis
- Post-procedure, developed pancreatitis
- Progressed to SIRS
 - Massive capillary leak
 - ARDS
 - Ascites
 - Pleural effusions
 - LFT’s
 - Thrombocytopenia
Case Presentation (continued)

- Required significant fluid therapy for circulatory support
- Required High Frequency Oscillatory Ventilation for nearly 3 weeks
- Successfully weaned off invasive mechanical ventilation after > 1 month
- Currently remains on non-invasive mechanical ventilation
- Pancreatitis resolved
- Liver function good though continues with increased bilirubin (stable)
The physiologic response to infection is central to the severity of illness associated with the infection itself.

- Different individuals infected with the same organism noted to have varying degrees of illness.
- Recognition by Bone, et al.
 - Formal definitions
 - Observation of “sepsis like syndrome” in patients without infection.
SRSA
- Slow releasing substance of anaphylaxis
- Now an archaic term

Era of attempts at “supranormal O₂ delivery”
- Belief that progression to multiple organ failure/dysfunction was due to increased metabolism of individual organs
- Liberal transfusion practice
- Use of inotropes despite “normal” cardiac output
- No improvement in outcome
Need for consensus definitions of sepsis continuum
- infection, SIRS, sepsis, severe sepsis, septic shock, MODS (multiple organ dysfunction syndrome)
- Aid in standardization of observational studies
- Aid in evaluation of therapeutic interventions
Definitions in children rely on age-specific norms of vital signs and laboratory data.

6 age groups proposed (preterm infants not included):
- Newborn - 0 days to 1 week
- Neonate - 1 week to 1 month
- Infant - 1 month to 1 year
- Toddler/pre-school – 2-5 years
- School age – 6-12 years
- Adolescent/young adult – 13 to < 18 years
SIRS

- A term used to describe the nonspecific inflammatory process that may occur after a variety of insults (NOT limited to infection)
- May occur as a result of:
 - Infection
 - Trauma
 - Burns
 - Pancreatitis
 - ARDS
 - malignancy
Definition of Infection

- A suspected or proven infection caused by any pathogen OR a clinical syndrome associated with a high probability of infection
- Evidence of infection may include positive findings on clinical exam, imaging, or laboratory tests
 - WBC’s in normally sterile body fluid, perforated viscus, CXR c/w pneumonia, petechial rash, purpura fulminans, etc…
SIRS

- The presence of at least 2 of the following 4 criteria
 - Core temperature > 38.5°C or < 36°C (may not be axillary or otic temperature)
 - Tachycardia – HR > 2 SD above normal for age in the absence of external stimuli, drug effect, or painful stimuli OR unexplained persistent elevation for > 30 minutes OR bradycardia for children < 1 y/o (<10th percentile for age) in the absence of vagal stimulus, medications, or CHD OR unexplained depression lasting > 30 min
 - Tachypnea – RR > 2 SD above normal for age or need for mechanical ventilation due to an acute process (i.e. not related to NM disease or anesthesia)
 - Leukocyte count increase or decreased for age NOT related to chemotherapy or >10% immature neutrophils
SIRS

- Major difference from adult definition of SIRS
 - Tachycardia/Tachypnea are common presenting symptoms of many pediatric diseases
 - To diagnose pediatric SIRS, 1 of the 2 criteria must be temperature or leukocyte abnormality
Sepsis, Severe Sepsis, and Septic Shock

- Sepsis
 - SIRS in the presence of or as a result of suspected or proven infection

- Severe Sepsis
 - Sepsis plus one of the following:
 - Cardiovascular organ dysfunction, ARDS, OR 2 or more other organ dysfunctions

- Septic Shock – sepsis and cardiovascular organ dysfunction (does NOT require presence of hypotension)

- Specific definitions for organ dysfunctions also delineated
Severe Sepsis: A Significant Healthcare Challenge

- Major cause of morbidity and mortality worldwide
 - Leading cause of death in noncoronary ICU (US)*
 - 11th leading cause of death overall (US) †§

- More than 750,000 cases of severe sepsis in US annually‡

- In the US, more than 500 patients die of severe sepsis daily‡

*Sands KE et al. *JAMA*. 1997;278:234-40; †Based on data for septicemia. §Murphy SL. National Vital Statistics Reports. ‡Angus DC et al. *Crit Care Med*. 2001 (In Press); reflects hospital-wide cases of severe sepsis as defined by infection in the presence of organ failure.
Severe Sepsis: Comparison With Other Major Diseases

Incidence of Severe Sepsis

- AIDS*
- Colon Cancer
- Breast Cancer
- CHF†
- Severe Sepsis‡

Mortality of Severe Sepsis

- AIDS*
- Breast Cancer
- AMI†
- Severe Sepsis‡

Severe Sepsis: A Significant Healthcare Challenge

Mortality (%)

- 28%†
- 34%‡
- 50%§

Etiology of Septic Shock in Children

- N. meningitidis
- S. pneumoniae
- H. influenzae type B
- Group B Streptococcus
- S. aureus
- Gram negative enteric bacteria (enterobacter, E. coli)
- Immunocompromised pseudomonas, fungus/yeast
Sepsis Associated Mortality in Children

- In 1966, mortality rate reported to be 97%
- 1995 population-based study (Watson, et. al.) of U.S. children
 - >42,000 cases reviewed
 - Mortality rate 10.3%
 - Significant improvement, but:
 - Still > 4300 deaths annually
 - Represents 7% of all deaths among children
- Improvement in mortality due to improved antimicrobial therapy and supportive care, but specific therapy for SIRS still lacking
Pathogenesis of Sepsis

Microbes
(+/- Antibiotics)

Endotoxins, Exotoxins

Inflammatory Response:
Leukocyte Stimulation and Cytokine Release
Activation of Endothelium

Antigen Clearance
Host Autoinjury
A Network of Cascading Events

Infection

- Inhibits
- Stimulates
- Activates

T Thrombin
TF Tissue Factor
TM Thrombomodulin
PAI-1 Plasminogen Activator Inhibitor 1
t-PA Tissue-type Plasminogen Activator
TAFI Thrombin Activatable Fibrinolysis Inhibitor
A Network of Cascading Events

- Infection
- Proinflammatory Mediators
- Anti-inflammatory Mediators
- Inflammation
- Coagulation
- Endothelial Injury
- T

Symbols:
- Inhibits
- Stimulates
- Activates

Acronyms:
- T: Thrombin
- TF: Tissue Factor
- TM: Thrombomodulin
- PAI-1: Plasminogen Activator Inhibitor 1
- t-PA: Tissue-type Plasminogen Activator
- TAFI: Thrombin Activatable Fibrinolysis Inhibitor
A Network of Cascading Events

- Inflammation
 - Proinflammatory Mediators
 - Anti-inflammatory Mediators
- Infection
- Coagulation
 - Thrombin (T)
 - Tissue Factor (TF)
 - Plasminogen Activator Inhibitor 1 (PAI-1)
 - Tissue-type Plasminogen Activator (t-PA)
 - Thrombin Activatable Fibrinolysis Inhibitor (TAFI)
- Endothelial Injury

Symbols:
- Inhibits
- Stimulates
- Activates
T Thrombin
TF Tissue Factor
TM Thrombomodulin
PAI-1 Plasminogen Activator Inhibitor 1
T-PA Tissue-type Plasminogen Activator
TAFI Thrombin Activatable Fibrinolysis Inhibitor
A Network of Cascading Events

Inflammation
- Proinflammatory Mediators
- Activated Protein C
- Anti-inflammatory Mediators

Coagulation
- T
- TM
- Protein C
- TAFI
- t-PA
- PAI-1

Fibrinolysis

Endothelial Injury
- TF

Infection

Inhibits
Stimulates
Activates
T
Thrombin
TF
Tissue Factor
TM
Thrombomodulin
PAI-1
Plasminogen Activator Inhibitor 1
t-PA
Tissue-type Plasminogen Activator
TAFI
Thrombin-Activatable Fibrinolysis Inhibitor
Early Biochemical Events in Sepsis

Intracellular Effect of Circulating Cytokines

Homeostasis Is Unbalanced in Severe Sepsis

↑ Coagulation
↑ Inflammation
↓ Fibrinolysis

Homeostasis

Effect of Unbalanced Homeostasis

- Thrombi form in microvasculature
- Prevent delivery of oxygen and nutrients to end organs despite seemingly adequate cardiac output and oxygen content of blood
- Damage to capillary bed – become “leaky”
- Results in progression of organ dysfunction
Severe Sepsis: The Final Common Pathway

Endothelial Dysfunction and Microvascular Thrombosis

Hypoperfusion/Ischemia of End Organ

Acute Organ Dysfunction (Severe Sepsis)

Death
Combined Cardiorespiratory support and antibiotics (N = 21)

Cardiorespiratory support alone (N = 8)

Antibiotics Alone (N = 8)

No Therapy (N = 11)

Endogenous Modulators of Inflammation

- Antiinflammatory cytokines
- Activated Protein C
 - Inhibits thrombin-mediated inflammatory activities
 - Inhibits attachment of leukocytes to endothelium

Decrease inflammatory response

Endogenous Modulators of Thrombosis

- Activated Protein C
- Antithrombin III-heparan sulfate
- Tissue factor pathway inhibitor (TFPI)

Prevent coagulation from becoming generalized

Endogenous Modulators of Fibrinolysis

- Tissue plasminogen activator (t-PA)
- Activated Protein C inhibits:
 - PAI-1
 - TAFI activation

Remove formed microthrombi and maintain blood fluidity

Severe Sepsis Therapy: Numerous Investigational Approaches

- **Bacterial modulators**
 - Antiendotoxin, BPI

- **Anticytokines**
 - IL-1ra, anti-TNF, sTNF-r

- **Antiinflammatory agents**
 - Glucocorticoids, leukocyte adhesion molecule inhibitors

- **Hemostatic agents**
 - Recombinant Human Activated Protein C, ATIII, TFPI, heparin

- **Other**
 - iNOS inhibition, antioxidants, thromboxane antagonists, bradykinin receptor antagonists

Endogenous Activated Protein C Modulates Coagulation, Fibrinolysis, and Inflammation in Severe Sepsis

- Activated Protein C
 - ↓ Coagulation
 - ↓ Inflammation
 - ↑ Fibrinolysis

Homeostasis

Activated Protein C
Xigris® (drotrecogin alfa)

- Recombinant Human activated protein C
- First “anti-inflammatory” agent to show clinical benefit in severe sepsis
- PROWESS Study Group
 - 164 centers in 11 countries
 - 1690 patients entered
 - Study stopped after 2nd planned interim analysis due to significant differences in mortality rates seen
PROWESS Study Group

● Results
 – Mortality rate 30.8% in placebo group compared to 24.7% in treatment group
 – Absolute reduction in risk of death 6.1% (P=0.005)
 – Means that 1 life saved for every 16 patients treated

● Only significant adverse effect seen was increase in serious bleeding
 – 3.5% vs. 2.0%, P=0.06
PROWESS Study Group
Additional Facts

- **Only** those with severe illness showed improvement
 - those with moderate illness showed no difference in outcome
 - those with mild illness showed slightly worsened outcome
- FDA was evenly divided on whether or not drug should be approved
- Significant exclusion criteria limit its use and evaluation in many clinical situations
Xigris in Pediatrics

- Recent Multicenter trial in Pediatric severe sepsis
- Study stopped at planned 2nd interim analysis
- However, this study stopped due to unfavorable risk/benefit ratio
- Xigris currently NOT recommended for pediatric patients
Bactericidal/Permiability Increasing Protein (BPI)

- Lancet. 2000 Sep 16;356(9234):961-7
 - Randomized Trial of 393 pediatric patients with severe meningococcal sepsis
 - Trend toward decreased number of multiple severe amputations (p=.067)
 - Improved functional outcome (p=.019)
 - No significant difference in mortality (7.4% vs. 9.9%)

- Earlier smaller studies seemed to indicate a potential decrease in mortality of as much as 25%

- Submitted to FDA for approval - denied
Difficult to perform with mortality as end-point
- Current mortality rate ~ 10%
- Assume intervention will decrease mortality by 25%
- For alpha=.05 and power of 80%, would need 1,979 patients per group!!

As a result, alternate end-points often used
- Organ failure free days, mechanical ventilator free days, etc…
ARDS

- A clinical syndrome of acute lung injury with hypoxemic respiratory failure that develops following a primary, initiating, severe physiological insult.
- Pulmonary edema develops from increased permeability of the alveolar-capillary membrane.
1994 CONSENSUS

- Acute onset
 - may follow catastrophic event
- Bilateral infiltrates on chest radiograph
- PAWP < 18 mm Hg or no clinical suspicion of cardiac cause of lung disease
- Two categories:
 - Acute Lung Injury - PaO$_2$/FiO$_2$ ratio \(\leq 300 \)
 - ARDS - PaO$_2$/FiO$_2$ ratio \(\leq 200 \)
INCITING FACTORS

- Shock
- Aspiration of gastric contents
- Trauma
- Infections
- Inhalation of toxic gases and fumes
- Drugs and poisons
- Miscellaneous
Associated Disease

- Chemical Pneumonia
- Infectious Pneumonia
- Trauma
- Hemorrhagic Shock
- Arrest

Direct

Indirect

Sepsis
ARDS Pathogenesis

- **Triggers:**
 - \textit{infection, trauma, other}
- **Mediators:**
 - toxins, cytokines, complement, arachidonic acid metabolites
- **Effectors:**
 - activated neutrophil, stimulated endothelium
- **Lung Pathology**

Systemic Inflammation

ARDS
Frequency of Sites of Infection Giving Rise to Severe Sepsis

AS Headley. *Chest* 1997;111: 1306-1321
Non-survivors

Survivors

AS Headley. *Chest* 1997;111: 1306-1321
Mortality

- Incidence is approximately 10 cases/1000 PICU admissions
- Initial mortality rates 40 - 60%
- Respiratory failure accounts for only 16% of deaths
- MOSF and sepsis syndrome account for majority of deaths
- For survivors, long term outcome very good
Mortality may be decreasing in recent years
 – better ventilatory strategies
 – earlier diagnosis and treatment
 – More recent mortality rates around 30%
Protective-ventilation hypothesis in ARDS

Lung damage results from:
1) over-distention of lung units
 high ventilatory volumes and pressures
2) shear injury
 lung units to collapsing at end exhalation
 cyclic closing and reopening of alveoli

Protective - ventilation:
1) avoids regional over-distention
2) avoids alveolar collapse with each breath
3) will improve outcome and reduce mortality
Volutrauma vs. Barotrauma

- Large animal study
 - Group 1 with bound chest
 - High pressures/Low volumes
 - Group 2 with open chest
 - High volumes/Low pressures
- Group 1 with minimal inflammatory changes
- Group 2 with significant inflammatory changes
- Opposite of expected result
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>GROUP RECEIVING LOWER TIDAL VOLUMES</th>
<th>GROUP RECEIVING TRADITIONAL TIDAL VOLUMES</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death before discharge home and breathing without assistance (%)</td>
<td>31.0</td>
<td>39.8</td>
<td>0.007</td>
</tr>
<tr>
<td>Breathing without assistance by day 28 (%)</td>
<td>65.7</td>
<td>55.0</td>
<td><0.001</td>
</tr>
<tr>
<td>No. of ventilator-free days, days 1 to 28</td>
<td>12±11</td>
<td>10±11</td>
<td>0.007</td>
</tr>
<tr>
<td>Barotrauma, days 1 to 28 (%)</td>
<td>10</td>
<td>11</td>
<td>0.43</td>
</tr>
<tr>
<td>No. of days without failure of nonpulmonary organs or systems, days 1 to 28</td>
<td>15±11</td>
<td>12±11</td>
<td>0.006</td>
</tr>
</tbody>
</table>
28-Day Survival among 53 Patients with the ARDS Assigned to Protective vs Conventional Mechanical Ventilation

Mortality Rate in ARDS
Traditional Tidal Vol. (N = 257) vs Low Tidal Vol. (N= 260)

In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.
Inflammatory Mediators in BAL in ARDS Using Lung Protective Strategy

- Significant decrease in pro-inflammatory cytokine concentration in BAL fluid in patients receiving lung protective strategy

SIRS/Sepsis - Conclusions

- Sepsis is a significant healthcare challenge with major morbidity, mortality, and health economic implications.
- Patients with severe sepsis (acute organ dysfunction) are at high risk for mortality.
- Systemic inflammation, coagulation, and impaired fibrinolysis are key components of disordered homeostasis in patients with severe sepsis.
- With increased knowledge of sepsis pathophysiology, researchers have identified potential investigational agents that may interrupt the inflammatory cascade.
- The future may be brighter!!
ARDS in Pediatrics

Conclusions

- Nearly 40 years after initial description
- Better understanding of Pathology
- Improved insight into pathogenesis
- New trends in conventional treatment modalities
- Innovations occurring rapidly
- Expect outcome breakthrough soon
<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number of Patients</th>
<th>Mortality Rate</th>
<th>Predicted Mortality PRISM II</th>
<th>Predicted Mortality PIM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARDS</td>
<td>87</td>
<td>6.90%</td>
<td>2.61%</td>
<td>4.78%</td>
</tr>
<tr>
<td>Septic Shock</td>
<td>77</td>
<td>22.10%</td>
<td>18.83%</td>
<td>21.57%</td>
</tr>
<tr>
<td>Both</td>
<td>19</td>
<td>26.31%</td>
<td>33.31%</td>
<td>29.12%</td>
</tr>
</tbody>
</table>