Atrial Septal Defects

Heart With Atrial Septal Defects

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.


An Atrial Septal Defect, or ASD, is a hole in the wall between the right and left atria (atrial septum). In the presence of an ASD, blood flows from the higher pressure left atrium to the lower pressure right atrium.

When this happens, the oxygen-rich blood of the left atrium is redirected through the right side of the heart and back to the lungs. The right atrium, right ventricle, and pulmonary artery may enlarge due to the increased blood flow through these structures.

Long-term side effects of an untreated ASD include atrial arrythmias (loss or abnormality of rhythm), ventricular dysfunction, and pulmonary vascular obstructive disease (a condition in which the pulmonary arteries become thickened due to high blood flow). For these reasons, it is preferential to close even small ASDs early in life to prevent complications later in life.

Three Types of ASD

 
Secundum-Type ASD

Secundum-type ASDs are the most common, comprising approximately 85% of all ASDs. In many cases, infants and young children are asymptomatic and the ASD may not be detected until school age or later. Approximately 20% of secundum-type ASDs close spontaneously in the first year of life. Often, a heart murmur, associated with the increase in blood flow across the pulmonary valve, is the symptom that causes a physician to investigate further. The diagnosis of an ASD is confirmed by echocardiography.

In a secundum-type ASD, the hole is located in the central part of the atrial septum. The methods of treatment for a secundum-type ASD consist of surgical repair or a catheter technique. Options for surgical repair involve suture closure (reserved for small ASDs) or patch closure. The patch material may be a portion of the patients own pericardium (the sac around the heart) or a synthetic material. The catheter technique involves closure of the ASD with a synthetic device that plugs the hole. The device is introduced through a heart catheter which is passed through a vein in the leg that leads up to the heart. Initially, the device is held in place by the natural pressures created within the atria. Over time, the device acts as a framework over which normal tissue grows.

 
Sinus Venosus ASD

Sinus venosus atrial septal defects constitute 5% to 10% of all ASDs. In a sinus venosus ASD the hole is located in the upper portion of the atrial septum. This type of ASD is often associated with anomalous drainage of the right, upper pulmonary veins. In other words, the pulmonary veins, which normally carry oxygenated blood from the lungs to the left atrium, drain into the right atrium instead. There is no chance for spontaneous closure of this type of ASD. For this reason, surgical repair is necessary for patients with this type of ASD.

 
Primum-Type ASD

Primum-type ASDs constitute between 5% and 10% of all ASDs. In a primum-type ASD the hole is located in the lower part of the atrial septum. Frequently, abnormalities of one or more heart valves (most often the mitral valve) are associated with this defect. Unlike the secundum-type ASD, symptoms of this type of ASD are seen during early childhood. Surgical repair is the only method of treatment for a primum type ASD since there is no chance of spontaneous closure.


What Is Normal Cardiac Anatomy?

When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

 
Learn More About Normal Cardiac Anatomy

Heart With Normal Cardiac Anatomy

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.


When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

The heart is composed of four chambers. The two upper chambers, known as atria, collect blood as it flows back to the heart. The two lower chambers, known as ventricles, pump blood with each heartbeat to the two main arteries (the pulmonary artery and the aorta). The septum is the wall that divides the heart into right and left sides. The atrial septum separates the right and left atria; likewise, the ventricular septum separates the two ventricles.

There are four valves that control the flow of blood through the heart. These flap-like structures allow blood to flow in only one direction. The tricuspid and mitral valves, also known as the atrioventricular valves, separate the upper and lower chambers of the heart. The aortic and pulmonary valves, also known as the arterial valves, separate the ventricles from the main arteries. Oxygen-depleted blood returns from the body and drains into the right atrium via the superior and inferior vena cavas. The blood in the right atrium then passes through the tricuspid valve and enters the right ventricle.

Next, the blood passes through the pulmonary valve, enters the pulmonary artery, and travels to the lungs where it is replenished with oxygen. The oxygen-rich blood returns to the heart via the pulmonary veins, draining into the left atrium. The blood in the left atrium passes through the bicuspid, or mitral, valve and enters the left ventricle.

Finally, the oxygen-rich blood flows through the aortic valve into the aorta and out to the rest of the body.

Tetralogy of Fallot

What Is Tetralogy of Fallot?

Tetralogy of Fallot (fah-LO) is a congenital (present at birth) heart defect. In tetralogy of Fallot (or TOF), four related heart defects change the way blood flows to the lungs and through the heart.

TOF is repaired through open-heart surgery soon after birth or later in infancy. Some infants need more than one heart surgery. Most babies who are treated do very well, but will need regular follow-up visits with a heart specialist.

What Happens in Tetralogy of Fallot?

In most cases of tetralogy of Fallot, too little blood goes to the lungs. This low-oxygen (blue) blood then circulates to the rest of the body, and too little oxygen reaches the body tissues.

Babies with TOF often have cyanosis — a blue or purple tint to the baby's skin, lips, and fingernails.

If tetralogy of Fallot isn't treated, a child may have:

  • cyanosis that gets worse
  • spells where the blood oxygen levels become very low
  • dizziness, fainting, or seizures
  • a higher risk of endocarditis, an infection of the inner layer of the heart
  • high pressure in the right side of the heart that can cause an irregular heartbeat (an arrhythmia)

Children whose TOF isn't fixed usually become increasingly blue over time and have difficulty participating in physical activities (like playing sports). Most babies who have surgery to correct the defect do very well and can participate in normal kid activities.

How Does Tetralogy of Fallot Affect the Heart?

"Tetralogy" means a combination of four related symptoms or problems. The four problems of tetralogy of Fallot are:

  1. Ventricular septal defect (VSD), which is a hole in the septum, or wall, separating the two lower chambers, or ventricles, of the heart. The septum normally acts as a barrier that prevents blood from both sides of the heart from mixing. But when there is a VSD, the high-oxygen blood from the left ventricle and the low-oxygen blood from the right ventricle can mix. This can lead to either too little or too much blood flow going to the lungs. The VSD in children with TOF is usually large.
  2. Pulmonary stenosis, a narrowing or thickening of the valve that connects the right ventricle to the pulmonary artery, the blood vessel that carries low-oxygen blood from the heart to the lungs. When in the lungs, blood normally soaks up the oxygen that we breathe and becomes red, oxygen-rich blood. This red blood returns to the heart, and then is pumped to the body.

    With pulmonary stenosis, the heart has to work harder than normal to pump blood to the lungs. There is also less blood traveling to the lungs because the pathway is narrowed. This leads to less blood becoming red, oxygen-rich blood. Sometimes, infants with TOF have pulmonary atresia, where the pulmonary valve is completely sealed off.
  3. Right ventricular hypertrophy (hi-PER-truh-fee), which is a thickening of the muscular wall of the right ventricle. The thickened wall can contribute to blocking the flow of blood through the pulmonary valve, which allows blood from the heart to flow into the lungs.
  4. An "overriding aorta," which means the artery that carries high-oxygen blood to the body is out of place and arises above both ventricles, instead of just the left ventricle, as in a healthy heart. This allows some blood that is low in oxygen to flow into the aorta and out to the body, instead of to the pulmonary artery, which would normally take it to the lungs to pick up oxygen.

What Are the Signs of Tetralogy of Fallot?

Cyanosis is a very common sign. Healthy babies can sometimes also have bluish skin around the mouth or eyes from prominent veins under the skin, but their lips and tongue look pink. Babies who have low oxygen levels in the blood usually have blue lips and tongues in addition to bluish skin.

A child with TOF might have sudden episodes of deep cyanosis, called "hypercyanotic spells" or "Tet spells," during crying or feeding. Older children who have Tet spells will often instinctively squat down, which helps to stop the spell.

Other signs include:

  • heart murmur
  • fussiness
  • tiring easily
  • difficulty breathing
  • rapid heartbeat (palpitations)
  • fainting
  • "clubbing," where the skin or bones around the tips of fingers are widened or rounded

What Causes Tetralogy of Fallot?

The specific cause of tetralogy of Fallot isn't always known. The TOF changes in a baby's heart develop in the early weeks of pregnancy. In some cases, there are genetic causes of TOF — for example, children with Down syndrome or DiGeorge syndrome are more likely to have TOF. Someone born with TOF is more likely to have a child or sibling with it. Each year, roughly 1 out of every 2,500 babies born in the United States have the condition.

Babies of mothers who get rubella (German measles) or other viral illnesses during their pregnancies are at a higher risk for TOF. Other pregnancy-related risks include poor nutrition, alcohol abuse, poorly controlled diabetes, and the mother's age (over 40). Certain environmental factors, such as air pollution, also may increase a mother's chances of having a baby with TOF.

Most of the time, a child with TOF doesn't have any other birth defects.

How Is Tetralogy of Fallot Diagnosed?

Doctors might do several tests to find out if a baby has tetralogy of Fallot and to get more details about the baby's heart and blood vessels, including:

  • pulse oximeter: a small sensor that clips onto the fingertip, toe, or ear and measures how much oxygen is in the blood. In many newborn nurseries, all babies have a pulse oximeter test before going home to make sure that their oxygen level is normal.
  • electrocardiogram (or EKG): a test that records the electrical activity of the heart
  • echocardiogram, or "echo": an ultrasound picture of the heart. It records the motion of the blood through the heart and can measure the direction and speed of blood flow.
  • chest X-ray
  • cardiac catheterization: a thin, flexible tube called a catheter is inserted into the heart, usually through a vein in the leg or arm, and provides information about the heart as well as blood pressure and blood oxygen levels. Sometimes, a device is inserted into the heart or blood vessels through the heart catheter.

How Is Tetralogy of Fallot Treated?

Doctors repair tetralogy of Fallot through open-heart surgery soon after birth or later in infancy, depending on the baby's health and weight and severity of defects and symptoms.

The two surgical options are:

  1. Complete repair: The surgeon widens the passageway between the right ventricle and the pulmonary artery to improve blood flow to the lungs. The ventricular septal defect is patched to stop the mixing of high-oxygen blood with low-oxygen blood between the ventricles.

    These repairs also fix the two remaining defects (overriding aorta and right ventricular hypertrophy). Because the right ventricle doesn't have to work as hard to pump blood into the lungs, the thickness of the ventricle wall will decrease. And the patched VSD prevents blood with low oxygen from flowing into the aorta.
  2. Temporary or palliative surgery: Minor repairs can improve blood flow to the lungs. This usually is done only when a baby is too weak or small to have full surgery. The surgeon creates a secondary route for blood to travel to the lungs for oxygen by placing a small tube (called a shunt) between a large artery branching off the aorta and the pulmonary artery.

    The full repair is done later when the baby grows stronger.

Most babies whose tetralogy of Fallot is repaired do very well, but will need regular follow-up visits with a heart specialist.

Reviewed by: Gina Baffa, MD
Date reviewed: May 04, 2017