Ventricular Septal Defects

Heart With Ventricular Septal Defects

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.


Simple ventricular septal defects are the most common form of congenital heart disease. A ventricular septal defect is a hole in the wall between the right and left ventricles (ventricular septum). A VSD can potentially cause a shunting of blood from the left ventricle to the right ventricle or from the right ventricle to the left ventricle. The position and size of the VSD determine the physiology and, in turn, dictate the timing of intervention.

The ventricular septum is made up of two components, the truncal portion and the conoseptal portion. These two sections fit together like two pieces of a puzzle. The position of the VSD among these two portions of the septum determines the type of VSD.


Five Types of VSD

 
Conoventricular

A conoventricular VSD results when there is a space between where the two portions of the ventricular septum meet. This type of VSD is not typically associated with other forms of congenital heart disease. The size of a conoventricular VSD is the predominate indicator of physiology. A small conoventricular VSD may close on its own as the child grows. A larger VSD may cause greater strain on the heart and need to be repaired surgically. Surgical repair entails patch closure of the VSD using a synthetic material.

 
Muscular

Muscular VSDs are the most common type of VSD and are not usually associated with other forms of congenital heart disease. A muscular VSD is a hole located in the truncal portion of the ventricular septum. Again, size is the predominate indicator of physiology. This type of VSD has the highest chance of spontaneous closure and therefore requires less surgery.

 
Conoseptal

A conoseptal VSD is a hole located in the conoseptal portion of the ventricular septum. This type of VSD has almost no chance for spontaneous closure and often requires surgical repair.

 
Atrioventricular Canal Type

An Atrioventricular Canal Type VSD is a hole located in the upper portion of the ventricular septum. Often, this type of VSD is associated with a large ASD as well as malformed atrioventricular valves in a complex congenital heart disease known as Complete Common Atrioventricular Canal Defect (see below).

An Atrioventricular Canal Type VSD allows oxygen-rich blood from the left ventricle to pass into the right ventricle resulting in increased blood flow to the lungs. This type of VSD has no chance of spontaneous closure. Surgical repair is required and involves patch closure of the VSD using a synthetic material

 
Malalignment

Malalignment of the conoseptal portion of the ventricular septum results in a malalignment VSD. This type of VSD causes one of the most common forms of congenital heart disease known as Tetralogy of Fallot. Because the two portions of the ventricular septum have failed to align properly, the anatomy of other structures in the heart are affected. Namely, there is less space for the growth of the pulmonary valve and artery resulting in pulmonary stenosis. In addition, the aorta is not aligned properly resulting in an overriding aorta (i.e. the aorta lies directly over the VSD). Finally, the right ventricle typically works at the lower, pulmonary pressure. Due to the presence of the VSD, the right and left ventricles are pumping at the same pressure. A secondary condition, known as right ventricular hypertrophy (enlargement of the right ventricle), is a result of the right ventricle working at systemic pressure.

The resistance of blood flow through the stenotic pulmonary valve results in deoxygenated blood flowing from the right ventricle through the VSD directly into the left ventricle. This deoxygenated blood is then pumped from the left ventricle out to the body causing the baby to appear cyanotic or blue. Corrective surgery involves patch closure of the VSD and enlargement of the narrow area of the pulmonary artery and right ventricle.


What Is Normal Cardiac Anatomy?

When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

 
Learn More About Normal Cardiac Anatomy

Heart With Normal Cardiac Anatomy

Note: To view heart animations, you need the latest version of the
Adobe Flash Player.


When your child has a congenital heart defect, there's usually something wrong with the structure of his or her heart's structure.

The heart is composed of four chambers. The two upper chambers, known as atria, collect blood as it flows back to the heart. The two lower chambers, known as ventricles, pump blood with each heartbeat to the two main arteries (the pulmonary artery and the aorta). The septum is the wall that divides the heart into right and left sides. The atrial septum separates the right and left atria; likewise, the ventricular septum separates the two ventricles.

There are four valves that control the flow of blood through the heart. These flap-like structures allow blood to flow in only one direction. The tricuspid and mitral valves, also known as the atrioventricular valves, separate the upper and lower chambers of the heart. The aortic and pulmonary valves, also known as the arterial valves, separate the ventricles from the main arteries. Oxygen-depleted blood returns from the body and drains into the right atrium via the superior and inferior vena cavas. The blood in the right atrium then passes through the tricuspid valve and enters the right ventricle.

Next, the blood passes through the pulmonary valve, enters the pulmonary artery, and travels to the lungs where it is replenished with oxygen. The oxygen-rich blood returns to the heart via the pulmonary veins, draining into the left atrium. The blood in the left atrium passes through the bicuspid, or mitral, valve and enters the left ventricle.

Finally, the oxygen-rich blood flows through the aortic valve into the aorta and out to the rest of the body.

Congenital Heart Defects

What Is a Congenital Heart Defect?

A congenital heart defect is a problem in the heart's structure that is there when a baby is born. Heart defects can range from mild to severe.

What Causes a Congenital Heart Defect?

Congenital heart defects happen because of incomplete or abnormal development of the fetus' heart during the very early weeks of pregnancy. Some are known to be associated with genetic disorders, such as Down syndrome.

But the cause of most congenital heart defects isn't known. While they can't be prevented, many treatments are available for the defects and related health problems.

Common Heart Defects

Common types of congenital heart defects, which can affect any part of the heart or its surrounding structures, include:

What Are the Signs & Symptoms of a Heart Defect?

Because congenital defects often affect the heart's ability to pump blood and to deliver oxygen to the tissues of the body, they often produce telltale signs such as:

  • a bluish tinge or color (cyanosis) to the lips, tongue, and/or nailbeds
  • an increased rate of breathing or difficulty breathing
  • poor appetite or difficulty feeding
  • failure to thrive (weight loss or failure to gain weight)
  • abnormal heart murmur
  • sweating, especially during feedings
  • a weaker pulse

If you notice any of these signs in your baby or child, call your doctor right away. If your doctor notices these signs, you may be referred to a pediatric cardiologist (a doctor who specializes in treating heart problems).

How Is a Heart Defect Diagnosed?

Some congenital heart defects cause serious symptoms right at birth. For those, a baby will go to the newborn intensive care unit (NICU) in the hospital for immediate evaluation by a cardiologist. Other defects might not be diagnosed until the teen years — or even adulthood.

Newborn Screening

Newborns in the U.S. are screened at least 24 hours after birth to look for serious congenital heart problems that can lower oxygen levels. This screen is a simple, painless test using a machine called a pulse oximeter. The oximeter uses a sensor put on a baby's skin that estimates how much oxygen is in the baby's blood. This test can help spot heart problems early on so that they can be treated right away. The screening will find most serious heart defects, but some babies who test normal could still have a problem, especially COA or other defects on the left side of the heart.

Testing

After a complete physical exam, including evaluation of the baby's heart rate and blood pressure, the cardiologist will order an electrocardiogram (EKG).

The cardiologist will probably order an echocardiogram — a test that uses sound waves to create a picture of the heart and its circulation. Echocardiograms are the primary tool for diagnosing congenital heart defects.

A fetal echocardiogram is a specialized type of ultrasound that allows diagnosis of heart problems in utero. This can be done as early as 16–18 weeks into the pregnancy. These tests are ordered when a possible heart abnormality is seen on a level II ultrasound. They're also done if another close family member has a congenital heart defect or if the mother has a condition, such as diabetes, that might make a heart problem in the fetus more likely.

Sometimes, doctors order a chest X-ray or a cardiac catheterization.

When Should I Call the Doctor?

If you think your child may have a heart problem or you notice any signs (such as difficulty breathing or feeding, or blue lips or tongue) that concern you, call your doctor. If your baby suddenly turns very blue or loses consciousness, call 911.

More treatments than ever are available for congenital heart defects, and most defects are treated successfully. Children with heart problems are best cared for by a team of specialists, which usually will include:

  • pediatric cardiologists
  • pediatric heart surgeons
  • pediatric cardiac anesthesiologists
  • doctors specialized in the intensive care of children with heart problems and specialized nurses, nurse practitioners, physician assistants, and many others

Many kids with heart problems benefit from having their hearts fixed surgically or through a cardiac catheterization procedure. The sooner they get medical attention, the better the chances for the fullest recovery possible.

With all the medical resources available, a congenital heart defect won't necessarily prevent a child from leading a normal life. By working with the health care team, you'll get the best care possible for your child.

Reviewed by: Steven Dowshen, MD
Date reviewed: October 30, 2017